Zenoss Discovery and Classification

Jane Curry
Skills 1st Ltd
2 Cedar Chase
Taplow
Maidenhead
SL6 OEU
01628 782565

jane.curry@skills-1st.co.uk

April 2009
Jane Curry
Skills 1st Ltd

www.SsKills-1st.co.uk

© Skills 1st Ltd

22 Jun 2009

http://www.skills-1st.co.uk/
mailto:jane.curry@skills-1st.co.uk

Synopsis

Zenoss has several possibilities for discovering devices, both manual and automatic.
Once discovered, the subsequent monitoring of a device depends very much on the
device class that an element is allocated to. This paper focuses particularly on a
scenario that automatically discovers devices in networks and then allocates those
devices to device classes.

The scenario uses a number of Zenoss techniques including Python scripts, event
commands and event transforms.

2 © Skills 1st Ltd 22 Jun 2009

Table of Contents

B B's U e 10 et 103 s DO USRS 4
2 Automatic device class allocation SCENATIO........ccceeeeeeeeieeiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 9
3 Elements of the SOIULION.......cccooiiiiiiiiiiiee e e e e e e eae s 12
3.1 dev_to_class.py scheduled script for device class allocation...............cccceeeeeeee. 12
3.2 Devices that do not (initially) support SNMP................ccc, 14
3.3 SNMP agent installed subsequently for device in /Ping..................ccoevveerinnnnnnn. 18
4 COMNCIUSIONS. . eeaeeeeesseesaaaaaaaaseessssssnneessssssnns 22

3 © Skills 1st Ltd 22 Jun 2009

1 Introduction

Zenoss provides a number of methods for discovering devices and their components.
The simplest method is to manually add individual systems but this technique
obviously does not scale well. If manual discovery is used, then many characteristics
of the device can also be specified.

Device/IP Search

a Zenoss server tims; 11:53:51
—— Add Device
ain Yiews
Device Name Device Class Path I =
ent ole Discovery Protocal aute | Callector Ilo:a\hnst =
ent .
L'_ Attributes
e Li
Nef Map FEATED (SIS | Snmp Part |161
Tag Humber | Serial Number |
Classcs Praduction State Praduction = Priarity INorma\ =
Ew
Rack Slot o
Pro Comments
Pro
Browse By Relations
f HW Manufacturer = Add
up: HW Product 4| Add
e 05 Manufacturer = Add
Ne
Reports 05 Product] Add
Lacation Path |
planzacment Hew Location | Add
Ade ce
/
Collectors Systems :E"dld'e
- eal
tin fvirtual
Ew ger
Hew System | Add
/
Graups ftemp
ftemp/fred
Hew DeviceGraup | Add
Add Device I

Figure 1: Dialogue for manually adding a new device

It is also possible to discover all devices on a network — this uses a ping-spray
mechanism that adds devices which respond, so can be good if networks are subnetted
to Class C with upto 254 devices, but it is not good if there are class B networks! Both
techniques can either be driven from the Zenoss Graphical User Interface (GUI) or can
be driven from the command line using zendisc. If devices are discovered by running
discovery on a network, they are automatically added to the device class of

/ Discovered.

Device classes generally control the availability and performance monitoring of a
device. All device classes have zProperties that control SNMP access, telnet and ssh
access, Windows Management Instrumentation (WMI) access and most other
properties necessary for configuring monitoring.

4 © Skills 1st Ltd 22 Jun 2009

Classes

zProperties

Pr

Browse By

Figure 2: zProperties for the top-level | Device class (partial panel)

Templates

zProperties Configuration

Property
zCollecterClientTimeout
2CollectarDecoding

zCallectarLogChanges
zCallectarPlugins

zCommandCommandTimeout
zCommandCycleTime
2CommandExistanceTest
zCommandLoginTimeout
zCommandLeginTries
2CommandPassword
zCommandPath
zCommandPart

zCommandProtocal

zCammandSearchPath

zCommandUsername

zDaviceTemplates

zFileSystemMaplgnorelameas

2FileSystemMaplgnoreTypes

zlcon

zIfDescription

zInterfaceMaplgnoreliames

zInterfaceMaplgnereTypes

zIpServiceMapMaxPort

zKeyPath

zLinks

zLocallnterfaceNames

Value

180

Ilatm-l

Edit

[t5.0

|60

I'test -f %5

[t0.0

L

I/npt/zennss/libexec

|22

Issh

Device

Ifzpar‘tfdmdf\mgf\ccnsfnoicon .png

False ¥|

1024

IN.".ssh,"id_dsa

I~lo

Type Path
int
string

boolean
lines

float
int
string
float
int
string
string

int

R N~ N~ -

string

lines !

string i

lines /

string !

lines !

string

boolean

string

string

int

string

string

- N - N - N —

string

Note the zCollectorPlugins property (3 from the top) can be used to control the
information that will be collected from a device on a modelling cycle (as opposed to a
discovery poll).

© Skills 1st Ltd

22 Jun 2009

Zen E_.) SS Core

/Devices Zenoss server time: 11:17:2

Classes Events zProperties Templates

Sortable Selection

Name: zCollectorPlugins

D Path: /
ap
=B e erestetryie| V| a1 iet et [+]
zenoss.snmp.NewDeviceMap 2zenoss.cmd.darwin.ifconfig i
Classes _ ; . :
zenoss.snmp.DeviceMap zenoss.cmd.darwin.memory
=
n S S e zenoss.cmd.darwin.netstat_an
S - zenoss.snmp.RouteMap : zenoss.cmd.darwin.process
Pr zenoss.cmd.darwin.swap
Pr zenoss.cmd.df

zenoss.cmd linux.ifconfia =]

Ausilsble fields (drag to other list to add)

Plugins (drag to change order)

Save I Delete I

Figure 3: zCollectorPlugins for [Devices device class

The third element affected by device class is the performance Template. This controls
the performance data that is collected and any thresholds that may generate events,
based on that performance data.

Zenoss Core

/Devices Zenoss server time: 11:21:49

Classes Events zProperties Templates

Main VYiews

Available Performance Templates

Definition Path Description
[Devices Basic template that only collects sysUpTime,
[~ IpService [Devices Place holder for future use,
[~ osProcess [Devices Monitors for OSProcess object
[~ WinService [Devices Place holder for future use,
[ethernetCsmacd [Devices Standard ethemet inteface template with 75% utilization threshold

Classes
Ev

l_ ethernetCsmacd 64 [Devices Template for 64-bit interface counters, Must use SHMP v2c for it to work,

Figure 4: Performance Templates for [Devices

All device classes and individual devices have a zProperties page that can override
any default or inherited zProperty. Zenoss's object-oriented class hierarchy means
that common properties can be specified higher up the class hierarchy with specific
attributes being overridden further down the hierarchy. So, for example, the device
class /Server/Linux has extra zCollectorPlugins defined.

6 © Skills 1st Ltd 22 Jun 2009

Classes Events zPropertes Templates

IET: C Sortable Selection

Mame: zCollectorPlugins

Path: /Server/Linux

zenoss.snmp.NewDeviceMap
zanoss.snmp.DeviceMap
zenoss.snmp.InterfaceMap
zenoss.snmp.Route Map

zenoss.snmp.IpServiceMap
o

-'j_ zenoss.snmp.HRFile SystemMap
Prod

zenoss.snmp.HRSWRunMap

Browse By zenoss.snmp.CpuMap

Re
Figure 5: zCollector plugins for [Server/Linux

Any device that is placed in this class or a subclass of /Server/Linux will, by default,
have CPU utilisation collected along with filesystem and software information from
the SNMP Host Resources MIB. Note that the zCollectorPlugins are not specifying
performance data; they are specifying availability information.

The standard performance template (called Device) for /Devices, is also overridden at
the /Server/Linux subclass.

7 © Skills 1st Ltd 22 Jun 2009

/Devices fServer fLinux /Templates fDevice Zenoss server time: 11:37:13

Performance Template

State at time: 2009/02/11 11:35:58
Hame Device

Target Class IFroducts.ZenMndel.Dewce

Desaiption

Net-SHMP template for Linux devices,

Save |

Select: Al None

Browse By Hame Source Source Type Enabled
l_ laloadIntl 1.3.6.1.4.1.2021.10.1.3.1 SHNMP True
7 laLoadintis 1.3.6.1.4.1,2021,10.1,3.3 SHMP True
[laLoadints 1,2.6,1,4,1,2021,10,1,5.2 SHMP True
™ memavailReal 1,2.6.1,4.1,2021,4,6.0 SHMP rue
r memAvailSwap 1,3.6,1,4,1,2021.4.4.0 SHMP True
™ memeuffer 1.3.6.1,4.1,2021.4.14.0 SHMP True
™ memcached 11,3.6,1.4,1.2021.4.15.0 E True
[T sscpuldle 1,3.6.1,4.1,2021,11,11.0 SHMP True
[T sscpurawwait 1.3.6.1.4.1,2021.11.54.0 sHMP B
[™ sscousystem 1.3.6.1.4.1,2021.11.10.0 SHMP True
™ ssCpuuser 1,3.6.1,4.1,2021,11.9.0 SHMP T
[7 ssioRawReceived 1,2.6,1,4,1,2021,11,56.0 snmp True
" ssioRawsent 1,3.6.1,4.1,2021,11,57.0 snMP B

™ sysUpTime 1,3.6.1,2,1,25.1,1.0 snMP e

1 of 14 laLoadIntl - show all Page Size FO ok
- Thresholds

Select: Al None

Name Tvpe Data Points Severity Enabled
W it MinMaxThreshald laLoadInt5_laLaadInts Warning True

[low cpu idle MinMaxThreshald ssCpuldle_ssCpuldle Warning True

[low swap MinMaxThreshald mermAvailSwap_memAvailswap Warning True

- Graph Definitions

- Name Graph Points Units Height Width
F M (el FomEms high load, laLoadint15, laLoadInts, laLoadIntl procasses
Load Average

] CREE ssCpuSystem, ssCpulser, ssCpuRawWait, ssCpuldle R

Figure 6: Performance template (called Device) for the [Server/Linux device class

Devices that are placed into /Server/Linux automatically have CPU, memory and 10
data collected, graphs defined, and thresholds set so that events are generated for
extremes of CPU utilisation and low swap.

Any of these availability or performance monitoring characteristics can be overridden
either by a device subclass or by a specific device instance. Note that most default
information collection relies on SNMP support.

The /Discovered device class, to which automatically discovered devices are added, has
the same characteristics as the top-level /Devices class:

e ping polling is active
e SNMP polling is active with community name possibilities of public and private
e WMI monitoring is inactive

e zC(Collector plugins will collect basic SNMP information, including interface and
routing information

8 © Skills 1st Ltd 22 Jun 2009

e Performance information will only be gathered for interfaces

If auto-discovery for a network is to be deployed, then a mechanism is required to
assign discovered devices to a suitable class.

2 Automatic device class allocation scenario

Take the scenario where devices are automatically discovered by Zenoss for a
particular network. They will be allocated to the /Discovered device class. Note that
(at least by default) devices will only be discovered if they do respond to ping.

Of the devices that respond to ping, some may support SNMP; others don't. If devices
do support SNMP then their SNMP Object Identifier (OID) will be collected and
stored in Zenoss's Configuration Management Database (CMDB). Further, on a
modelling cycle, this OID will be re-checked and will be used to populate the hardware
manufacturer and model and the Operating System make and version.

Device/IP Search

Zen0OSssS' Core

fDevices fNetwork /Router fCisco fgroup-100-ri.class.example.org Zenoss server time: 12:18:(

Status os Hardware Software Events Perf Edit

Device Status

Device: group-100-rl.class.example.org P: 10.191.100.4 Status: @ Up

Component Type Status
Availability 99.615%
orl Map 5 Uptime 497d:02h:27m:52s SUEE
¥ State Production cpuSmin 0
Classes 1])
Priority Normal memdminFree @
ent: o
. y Locks Nane IpRouteEntry 0
@ Last Changes 2009/02/05 18:03:30 Ipinterface @
) Last Collection 2009/02/10 19:49:40
First Seen 2009/02/03 22:17:48

Browse By

Device Information

Organizers 0s
Location /VM-land Tag #
Groups None Serial #
Systemns /Raddle HW Make Cisco
Mirtual HW Model 7206
Collector |ocalhost OS5 Make LUnknown
OS5 Version [0S 12.0(12)

Rack Slot
syslame group-100-rl.class,example.arg
Contact Andrew.Findlay@skills-1st.co.uk

Location Virtual comms rack 100

SHMP Descr Cisco Internetwork Operating System Software 105 (tm) 7200 Seftware (C7200-DS-M), Version 12,0(12), RELEASE SOFTWARE (fel) Copyright (c) 1986-2000 by cisco
Systems, Inc, Compiled Tue 11-Jul-00 02:09 by htseng

Comments

Links Console: group-100-rl.cass.example.org

Figure 7: Status page for a device showing Hardware and OS information

Zenoss has a large database of hardware and software information out-of-the-box,
which can be added to and modified by the user.

9 © Skills 1st Ltd 22 Jun 2009

Zenoss Core

JManufacturers fCisco /7206 Zenoss server time: 12138147

I Overview Edit zProperties Modifications
Main Views

Manufacturer Cisco Hame 7206
Type Hardware Part Number
Product Keys .1.3.6.1.4.1.9.1,108

Description

Classes

= Product Instances

Device Name

aroup-100-rl.class.example.org 72086

aroup-100-r2.class.example.org 7206

Figure 8: Product entry for Cisco 7206 router showing SNMP OID association

A Product class also has zProperties which appear to do exactly what is required —
assign a device to a device class, based on the SNMP OID.

ZehOSS Core

JManufacturers fCisco /7206 Zenoss server time: 1214412

_1I zProperties Modifications
Main Yiews

zProperties Configuration

Property Value Type Path

zDeviceClass l/Devices/Network/Router string /Cisce

zDeviceGroup | string /izpart/dmd

zSystem |
Classes

E\ Save I

string [fzport/dmd

Delete Local Property

l_j Delete |
Figure 9: zProperties for the Product class | Manufacturers/Cisco/ 7206

Unfortunately with the current version of Zenoss (2.3.2) these zProperties are
documented as “For future use” and do not work.

The other alluring possibility for automatically assigning a device to a device class is
that the zendisc command documents an —assign-devclass-script option. (This used
to be called the —auto-allocate option prior to Zenoss 2.2.) Unfortunately, there is no
documentation as to how to use this script and the code in $ZENHOME / Products /
DataCollector [zendisc.py has comments that says this option does not work! So, we
have to hand-craft a solution using various facets of Zenoss.

The scenario described here assumes a device to be discovered into the /Discovered
class. By default, the device will remain in the /Discovered class; however the
mechanism described here means that if a device does not support SNMP on discovery
then approximately 1 day can go by before the device will be moved from

the /Discovery class to the /Ping class. During this period, the device will be polled for
SNMP every 5 minutes and, if no response is received, then the count on the initial
event reporting “SNMP agent down”, will be incremented. When the count on the

10 © Skills 1st Ltd 22 Jun 2009

event gets to 300, the device will be moved to /Ping which, by default, only ping-polls;
there are no SNMP polls and no performance templates assigned.

This permits staff to recognise that a newly-discovered device needs an SNMP agent
installing and/or configuring for use with Zenoss. Obviously the period elapsed before
action is taken, can be adjusted.

If the device is reconfigured after this 300x5 minute period, the assumption is that
the device will send an SNMP cold start TRAP to the Zenoss system. Zenoss will
configure this TRAP to check the current device class of the device and, if it is /Ping, to
move the device back to the class /Discovered. The cold start TRAP will also
automatically clear any “SNMP agent down” events from the same device.

For newly discovered devices that do support SNMP, and devices that may
subsequently support SNMP, a script will be run periodically by the Unix cron utility,
that uses the device's OID from the Zenoss CMDB and moves the device to an
appropriate device class.

Discover new device into /Discovered

SNMP sm;pported?

Y \

> “SNMP agent down”

Yes No — (eventclass/Status/Snmp
¢ events generated every
5 mins

Run dev to class.py When:

script peric_:-dically_to lookup deviceClass=/Discovered &&
OID & assign device class eventClass=/Status/Snmp &&
summary contains “SNMP agent down” &&
count > 300
Run event command to

echo device name to temporary file
Event zProperties clear ‘

“SNMP agent down” events
Periodically run script disco_to_ping.sh

Event transform moves device to check temp file(s) and

from /Ping to /Discovered generate event to Zenoss

Event rule check for device in When event of class

device class /Ping ISkills/Disco_to_ping received,
use class transform to run

Cold start TRAP arrives Python code to move devices

configured as event from |.-'Discovered to /IPing
[Status/Snmp/Snmp_agent_start =

Figure 10: Flowchart for assigning newly discovered devices to device class

11 © Skills 1st Ltd 22 Jun 2009

3 Elements of the solution

This solution uses a number of facilities that Zenoss provides, plus the ability to run
scripts periodically using the cron scheduler of the Zenoss operating system.

3.1 dev_to_class.py scheduled script for device class
allocation

The easy, optimal solution is when a device is discovered and responds to SNMP.
During the initial discovery, some SNMP information is gathered, including the
SNMP OID of the device. Once a device has been discovered with ping, a modelling
process takes place. Subsequently, modelling can either be run manually for a device
using the drop-down menu and the Manage -> Model Device option. Alternatively, the
zenmodeler process runs automatically, by default every 12 hours (configure from the
left-hand Collectors -> localhost menu).

One possibility would appear to be to use the event generated when a device is
discovered, to move the device to an appropriate class. Either an event class
transform might be considered or an event command. This turns out not to be such a
good idea because:

e the event is generated before the collector plugins of the modelling process has
been run, so the SNMP OID may not be known at event time

e if an event command is used, commands are actually processed asynchronously
every minute (by default) by the zenactions daemon and you can get bad
performance issues and inconsistencies in updating Zenoss's Zope CMDB
configuration database if several updates run within the 1 minute cycle

e if an event transform is used, similarly performance issues can ensue

Hence, this solution does not attempt to modify a device's class at discovery time but
runs a scheduled script which simply checks through all devices currently in the

class /Discovered, moves the devices to appropriate classes and then performs a single
CMDB commit at the end.

12 © Skills 1st Ltd 22 Jun 2009

& jane@bino:~ - Shell - Konsole <3> —

Session Edit View Bookmarks Settings Help

Ht usr/binsenu python
#t Description: nAllocate devices to device classes

#t Author: Jane Curry jane.curryb@skills-1st.co.uk
it Date: Feb 2nd 2009

#t Host system: Open SuSE 10.3

t Zenoss ver: Z2.3.2 stack-built

t Updated: Feb

tt Comments: From an idea from Cluther

import Globals, re, string

from Products.ZenUtils.ZenScriptBase import ZenScriptBase
from transaction import commit

dmd = ZenScriptBase(commect=True).dmnd

tt Create a dictionary of exact 0IDs ~ device class mappings

deviceClassMap = {
’.1.3.6.1.4.1.311.1.1.3.1.2" :’ /Server-Windous’ ,
’.1.3.6.1.4.1.8072.3.2.10" ;' /Server Linux’ ,
*.1.3.6.1.4.1.9.1.110" :’ /Network Router-Cisco’

3

discovered = dmd.Devices.Discovered

#t Cycle through all devices in the -Discovered subclass

for device in discovered.getSubDevices():
L
Try for an exact match with auto-discovered HW Product Key
L
exact=False
try:
deviceClass = deviceClassMapldevice.getHWProductKey()1]
discovered .moveDevices(deviceClass, device.id)
exact=True
print 'Exact match — moving device »s to class »s' » (device.id, deviceClass)
except KeyError:
print ’'No exact match for device s, HUProductKey »s’ ¥ (device.id, device.getHWProductKey())
pass
it
#t If no exact match, then how about partial matches?
it
if not exact:
if device.getHUProductKey() .startswith(’.1.3.6.1.4.1.311"):
discovered .moveDevices(’ #Server-Windows’ , device.id)
print ‘Windous match - moving device »s to class -Server-Windous' »device.id
elif device.getHWProductKey().startswith(’.1.3.6.1.4.1.8072"):
discovered .moveDevices(’ /Server~Linux’, device.id)
print ‘Linux match - moving device »s to class Server-Linux’ zdevice.id
elif device.getHWProductKey() .startswith(’.1.3.6.1.4.1.9"):
discovered.moveDevices(’ /Network’, device.id)
print ‘Cisco match - moving device »s to class sNetwork’ »dewice.id

commit()
"deu_to_class.py” 56 lines —1x— 1,1

Figure 11: dev_to_class.py Python script to move devices from [Discovered to more appropriate classes

Obviously, this script can be modified to add extra exact matches for the SNMP OID
and other partial matches based on the start of an OID.

Note that if you have a Zenoss GUI window opened for a device whose class has
changed then you will get an error message when you return to that window. You can
simply return to any available option in the left-hand menu and continue.

13 © Skills 1st Ltd 22 Jun 2009

@ Zenoss: Devices - Mozilla Firefox

File Edit View History Bookmarks Tools Help

(&EI o o @ ﬁj‘ |© http://zen232:8080/zport/dmd/Devices/Ping/devices/bino.skills-1st.co.uk/deviceOsDets

@ | & Zenoss: snmp_coldStart C Zenoss: Events G Zenoss:

Zen @ SS Core

| C Zenoss: Devices

Main Yiews Site error

An error was encountered while publishing this resource. The requested resource does not exist,

Please click here to return to the Fenoss dashboard

Request Information

Browse By

Figure 12: Error message when returning to device page after device class move

3.2 Devices that do not (initially) support SNMP

There may be many reasons why Zenoss cannot get SNMP information from a device:
e the device has no SNMP agent
e the device has a different SNMP community name than Zenoss is using

e the device uses a different port for SNMP than Zenoss is using (UDP/161 is the
default)

e the device uses a different version of SNMP than Zenoss is using (v1 is the
Zenoss default; v2c and v3 are possible)

e there may be a firewall between Zenoss and the device blocking SNMP

Whatever the reason, Zenoss will continue to poll devices in the /Discovered class
every 5 minutes. After the first failure, an event appears in the Event Console.

Info jﬁAcknowledged j 60

Classes

Events

Figure 13: SNMP agent down event with event count increasing

14 © Skills 1st Ltd 22 Jun 2009

On subsequent 5-minute polls, the event count is increased. This scenario is based on
allowing a period after discovery for the SNMP agent to be fixed, so action will be
taken when the event count reaches 300 (25 hours). After that, here is no point in
continuing to issue SNMP polls to these devices so they need moving to the /Ping
device class.

This is achieved using an event command which has a very flexible filter mechanism
to define exactly when something should happen. Basically, an event command
simply runs a shellscript.

The filter ensures that:

e the device is currently in the class /Discovered — we don't want to affect devices
that have already been allocated to useful classes

e the event is of class /Status/Snmp

e the summary of the event contains the string “SNMP agent down”. There are
several events that map to the /Status/Snmp event class — we are only
interested specifically in the SNMP agent down event

e the count > 300 — obviously this is easily adjusted

When ALL the filters are matched (the criteria are logically ANDed) then the script is
run the next time that zenactions wakes up.

15 © Skills 1st Ltd 22 Jun 2009

Zen(QSssS’ Core

fZenEventManager fEvent Commands fdisco_to_ping_file

Main Views

State at time: 2009/02/12 11:57:47
Ernablad |T|'|.|e hd
Iso

Default Comman d Timeout (secs)
Delay (secs)

Repeat Time (secs)

Command

+ %y Yo Yod Yalk

Clear Comman d

Device Class | is x| | /piscovered =l _I

Event Class | is | | /status/Snmp = 1

Summar vy [contains | ISNMP agent down _|
Add filterl =

Save |

Figure 14: disco_to_ping_file event command

A possible negative aspect of the event command is that it is run asynchronously by
the zenactions daemon which runs every minute (by default). If the event command
attempts to move a device to a different class and if there are lots of devices that get
processed similarly at the same time (as is likely if a network discovery was
performed) then you can end up with a large number of event commands all running
at once, all trying to modify the CMDB database. When I first tried this, I ended up
with 80 concurrent processes, all spawned by zenactions, all trying to update the
CMDB. Performance was horrible and the CMDB transactions failed. So, the event
command simply echos the name of the device to a temporary file. The screenshot
above creates a different file every hour with a <yy><mm><dd><hh> suffix.

Now a mechanism is required to process the temporary data file. A small shellscript
is run by the cron scheduler that catenates any temporary data files into a single file,
$ZENHOME /local | disco-to_ping.out. The code that moves devices from one class to
another is Python, not shellscript, so rather than call Python code from the script, the
Zenoss utility to generate an event, zensendevent, is used. This means that there is a
tracking event within the Zenoss Event Console for when the process is run.

16 © Skills 1st Ltd 22 Jun 2009

Session Edit View Bookmarks Settings Help
|Mt/bin/bash

#t Source the Zenoss environment
. ~usr-local-zenoss-/scripts-/setenv.sh

This is the Zenoss server
zenoss=zenZ3Z.class.example.org

Catenate any temporary files into SZENHOME-localrsdisco_to_ping.out
#t and remove temporary files

cd SZENHOME-local
cat sdevsnull > disco_to_ping.out
for file in “ls disco_to_ping_file.="
do
cat 5file >> disco_to_ping.out
rm S5file
done
SZENHOME bin-zensendevent —d $Szenoss —c ~Skills/Disco_to_ping -s Info disco_to_ping process run

“disco_to_ping.sh" 19 lines —-5x—
Figure 15: disco_to_ping.sh script run periodically by cron

The zensendevent command takes a number of parameters, including:
o -d the device that generated the event — the Zenoss system in this case
e -C the event class to generate — a locally created class, /Skills/Disco_to_ping
o -S the severity of the event — Info (blue) in this case
e The remainder of the line is treated as the event summary

A new event is created, /Skills/Disco_to_ping, and it is configured with an event class
transform to run the Python code (from an event class, use the drop-down table menu
to reach the Transform option). Note that this is an event class transform, not an
event class mapping transform — it runs whenever an event of

class /Skills/Disco_to_ping arrives.

17 © Skills 1st Ltd 22 Jun 2009

Zen 0SS’ Core

[/Events /Skills /Disco_to_ping

P o Classes Mappings Events ZProperties

Transform

import Globals, re, string

from Products. ZenUtils.ZenScriptBase import ZenscriptBase
from transaction import commit

dmd = ZenScriptBase(connect=True).dmd

Map

file = open('/usr/local/zengss/zenoss/local/disco_to_ping.out’, 'r')
for line in file:

dev = line.strip() # strip off white space

device = dmd.Devices.findDevice(dev)

device. moveDevices('/Ping', device.id)

Classes

commit()

Figure 16: Event class transform for [Skills/Disco_to_ping

The script simply works through each line in disco-to_ping.out and moves each device
to the /Ping device class. A single commit is performed at the end which makes for
fewer transaction problems with the CMDB database.

Note that you cannot run an event transform when the “SNMP agent down” event
reaches a certain count as the count field of the event is not available at event
transform time.

Thus far, the solution moves devices to an appropriate class soon after discovery if the
device supports SNMP and moves non-SNMP devices to the /Ping device class if there
is no SNMP support 25 hours after discovery. There are two scripts to be scheduled by
cron or run manually — dev_to_class.py and disco_to_ping.sh.

3.3 SNMP agent installed subsequently for device in /Ping

To get good monitoring for a device, a responsive SNMP agent is a big help.
Hopefully, most devices will eventually have an agent installed and configured
suitably to communicate with Zenoss. The first indication of a well-configured SNMP
agent is likely to be a cold start TRAP from the device to Zenoss.

Zenoss has configuration out-of-the-box that interprets the generic cold start TRAP
but it maps to the /Unknown event class. To effect useful actions, this TRAP needs to
map to a specific event. To that end, create a new event subclass, Snmp_agent_start,

18 © Skills 1st Ltd 22 Jun 2009

under /Status/Snmp (use the SubClasses drop-down table menu and Add New
Organizer).

Device/IP Search

Zenoss Core

bjc _ Prefi =5 Logout Help
/Events /Status /Snmp Zenoss server time: 13:46:2,

Classes Mappings Events zProperties

t Events (|)¢ SubClass Count

ns Description

2 Instance Count

. - SubClasses
List Select: All None

r Snmp agent start a 2 1]
I Snmp agent stop 0 1 1]

Events

EventClass Mappings
- EventClassKey Evaluation Events

Figure 17: New event subclasses under | Events/Status/Snmp

A cold start TRAP in the Event Console can be mapped to this new class very simply
by selecting the event and using the drop-down table menu to “Map events to Class”
choose the new /Status/Snmp/Snmp_agent_start class from the drop-down list. This
mapping will apply to all cold start TRAPs.

The scenario here calls for a different action only if the device is in the /Ping device
class — action should certainly not be initiated whenever an SNMP agent is bounced;
we are really trying to define the first appearance of an SNMP agent. This is achieved
with a second event class mapping for the /Status/Snmp/Snmp_agent_start event
class.

Device/IP Search _

Zenoss Core bjc_Preferences Logout Help

/Events /Status /Snmp /Snmp_agent_ start Zenoss server time: 13:49:38

Classes Mappings Events zProperties

SubClass Count 0 Instance Count

EventClass Mappings

select: All None

[~ snmp coldStart snmp_coldStart evt.DeviceClass=="/Ping’ 0

[~ snmp coldStart 01 snmp_coldStart snmp trap snmp_coldStart 1]

Flgue 18: Event class mappings for |Status/Snmp/Snmp_agent_start

19 © Skills 1st Ltd 22 Jun 2009

As can be seen above, the original mapping simply maps if the summary of the event
contains the string snmp trap snmp_coldStart. Create a second mapping for this
event using the EventClass Mapping drop-down table menu and Add Mapping.

ZenOSS Core

J/Events /Status /Snmp /Snmp_agent_start /snmp_coldStart

Status i Sequence ZProperties Events Modifications

State at time: 2009/02/12 14:02:56
Name Isnmp_coldstart

Event Class Key Isnmp_coIdStart

Seguence 4]
Rule

Main Views

Regex

Example

Transform

from transaction |mport commit

[« [T »

Resolution

Save |

Figure 19: Event class mapping for /Status/Snmp/Snmp_agent_start for devices in [Ping device class

This mapping should only match if the device that sent the event is currently in device
class /Ping so a mapping Rule specifies this. The mapping Transform then achieves
two things:

e the component field of the event is set to snmp. This is so that we can
eventually use this event to clear any associated “SNMP agent down” events.

e the device is moved from /Ping to /Discovered

20 © Skills 1st Ltd 22 Jun 2009

Since there are now two mappings for the /Status/Snmp/Snmp_agent_start event
class, they should be prioritised using the Sequence tab, with the more specific event
being sequence number O (ie. tested first).

Zenoss server time: 14:13:24

Status Edit ZProperties Events Modifications

EventClass Evaluation

snmp coldStart /Status/Snmp/Snmp agent start evt.DeviceClass=="/Ping’

snmp coldStart 01 [Status/Snmp/Snmp agent start snmp trap snmp_coldStart

Figure 20: Sequence numbers for the | Status/Snmp /Snmp_agent_down event mappings

This ensures that only cold start TRAPs for devices in the /Ping class will have their
class changed; ordinary reboots of SNMP agents will be unaffected.

To complete the scenario, it would be useful for the

specific /Status/Snmp/Snmp_agent_start mapping to clear any “SNMP agent down”
events. Use the zProperties tab to set the zEventSeverity to Clear and the
zEventClearClasses to include /Status/Snmp events. Note that for
zEventClearClasses to be utilised, events must be from the same device and the
event component field must be the same. This is why the event mapping transform

sets the component field to 'snmp' to match those generated by the “SNMP agent
down” events.

Zenoss server time: 14:23:3!

Status Edit Sequence zProperties Events Modifications

zProperties Configuration

Property Walue Type Path
zEventAction Im string /
/Status/sSnmp
zEventClearClasses /Status/Snmp/Snmp_agent_stop lines JStatus/Snmp/Snmp_agent_start
zEventSeverity Im int Jstatus/Snmp/Snmp_agent_start
Save |

Delete Local Property

l_j Delete |

Figure 21: zProperties for event class mapping /Status/Snmp/Snmp_agent_start

At this point, recently discovered devices which have latterly had an SNMP agent
installed, are now in the same position as those devices who had SNMP support on
discovery so the periodic dev_to_class.py script should move the devices to a more
appropriate device class, based on their SNMP OID.

21 © Skills 1st Ltd 22 Jun 2009

4 Conclusions

This paper demonstrates a method for classifying devices that are automatically
discovered. For small environments where devices can be added and / or configured
manually, it is overkill. For larger environments where hundreds of devices may be
discovered, especially where a significant proportion do not initially support SNMP,
the solution seems to be helpful.

When testing the solution, $ZENHOME /log | zenactions.log is useful for checking the
progress of event commands and $ZENHOME |/ log | zenhub.log is useful for debugging
problems with event transforms. Python code can be tested as a standalone program
and bits of python can be tested using Zenoss's zendmd command environment.

22 © Skills 1st Ltd 22 Jun 2009

	1 Introduction
	2 Automatic device class allocation scenario
	3 Elements of the solution
	3.1 dev_to_class.py scheduled script for device class allocation
	3.2 Devices that do not (initially) support SNMP
	3.3 SNMP agent installed subsequently for device in /Ping

	4 Conclusions

